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Abstract. The paper is concerned with high-frequency diffraction by open finite-length waveguides. The problem
is reduced to an integral equation of the first kind over a finite interval, with its kernel depending on the difference
of the arguments only. A new asymptotic approach is developed that permits explicit analytical representation of
the solution.
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1. Introduction

Wave propagation in waveguides is a very important practical problem in the fields of acous-
tics, dynamics of seismic waves, ultrasonic nondestructive testing of materials, antenna design
and optical resonators [1–5]. From a theoretical point of view the case of a homogeneous
infinite waveguide of constant width has been studied by means of the Fourier transform and
the obtained results have now become classical (see [6]). Some relations between mode- and
ray-properties have also been discovered. A powerful mathematical technique developed by N.
Wiener, E. Hopf, and V. A. Fok [7] has been adapted for the case of semi-infinite waveguides.
Through application of this method, many problems for open-ended waveguides have been
successfully investigated [8]. Particularly, in the short-wave regime the technique permits to
transfer the geometrical theory of diffraction (Keller [9]) from the case of thin slits to the
semi-infinite waveguide (Lee [10]), with the use of factorization of the main characteristic
function. It should be noted that the investigation of diffraction problems within the different
great scientific schools, in underwater acoustics, solid dynamics, and electromagnetics, was
often carried out independently and sometimes they duplicated each other. Nevertheless, the
next intrinsic subject for all of them during the 50–70s had become the consideration of finite-
length structures. It was clarified that the wave field in elongated waveguides is locally similar
to that in infinite ones (Jones [11]). Later it was determined more exactly that these relations
take place for low frequencies only. However, a special approach was developed for arbitrary
fixed frequency which permits reduction to a finite linear algebraic system, to eliminate the
difference between semi-infinite and elongated waveguides (Babeshko [12]).

Thus, the main analytical results for homogeneous waveguides of constant thickness were
obtained at the beginning of 80s. Since then the rapid increase in computer power generated
the widespread tendency to treat engineering problems numerically, and many diffraction
problems have been solved with the use of finite-element and boundary-element techniques.
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However, numerical methods have obvious disadvantages, since they can usually help to
obtain only concrete digits for the values of the physical unknowns and do not allow one,
as a rule, to extract qualitative properties of any physical process. Moreover, if the diffraction
problem for a finite structure is studied numerically, then it is necessary to take at least 8–
10 grid nodes for every wave-length. Thus, if we solve the short-wave scattering problem,
the discretization procedure involves a discrete algebraic system which is too large, even for
modern computers. To overcome this difficulty, this case should be considered with the use of
a high-frequency asymptotic method.

From an engineering point of view, we aim to apply the results obtained below in the
ultrasonic evaluation of materials. The incident ultrasonic wave produced by a transducer at
the surface of the specimen, for the purpose of detecting defects in the material, is diffrac-
ted by these defects. Very often the flaws appear to be like thin slits or cracks – single or
multiple. Wave-lengths in acoustic microscopy can get as small as 10−4 m, with the size of
the flaw being of the order of 10−2 m. Thus, all geometric parameters are about a hundred
times larger than the wave-length (in the optical range this can be about one thousand times).
So, a high-frequency analysis is very suitable in this field. As to the single scatterer, an
interesting asymptotic method was developed in the fifties (see for instance, Millar [13]),
which is founded upon successive solution of the Wiener-Hopf equations for semi-infinite
slits. This method, although being proposed first as the result of some physical ideas (the slit
edges slightly influence each other), was later justified mathematically and is now known as
the method of the ‘edge waves’. The simplest array of cracks in materials is a pair of equal
cracks, and diffraction of the ultrasonic waves by the simple flaw structure involves the study
of the wave processes in the finite-length waveguide. The physics of the wave process near
the coupled structure is more complex, owing to interactions between the faces.

The ‘edge waves’ method cannot be transferred directly to the diffraction by a finite-length
waveguide, due to the presence of the propagating mode waves that lead to a strong interaction
between the ends of the waveguide. Nevertheless, for specific values of the frequency, close
to these mode values, Vajnshtejn [14] first proposed, as the basis of some physical ideas, an
approach similar to the method of ‘edge waves’. He discovered that at these frequencies the
wave propagating along the waveguide does not allow any mode distinct from the incident
one, when reflecting from the open edge. Hence, it is a transformation of a one-type wave,
like in diffraction by the single slit, and so successive reflections from the edges correctly
describe the wave picture. Nobody knows if this idea is correct for arbitrarily high frequency,
different from these critical mode values.

The main purpose of the present work is to put these physical ideas on a strict mathematical
basis. We propose an asymptotic method valid for high frequencies antipodal to those of
Vajnshtejn. Thus, our results complement the results of Vajnshtejn and others. Here we study
only open structures when resonances are absent, and symbolic functions of the main integral
operators have no pole singularities on the real axis.

2. Problem formulation and reduction to integral equations

Let the plane incident acoustic wave (k = ω/c is the wave number)

ϕ in = e−ik(x cosϑ+y sin ϑ) (1)

be scattered by a finite-length waveguide with the incident angleϑ , as illustrated in
Figure 1. The wave process is assumed to be harmonic with the following dependence on
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Figure 1. Incidence of a plane acoustic wave upon a finite-length waveguide.

time: exp(−iωt), whereω is the frequency of the oscillations. The scattered wave potential
ϕ(x, y) is the difference between the totalϕt and the incidentϕ in waves

ϕ = ϕt − ϕ in (2)

and satisfies the Helmholtz equation

1ϕ + k2ϕ = 0, (3)

everywhere outside the two finite parallel plates of length 2a, with the distance between them
being equal to 2h. Assume, for instance, that the plates are acoustically soft

ϕt = 0 : ϕ = −ϕ in, |x| 6 a, y = ±h. (4)

This problem was studied by D. S. Jones [11] who used a method which is unsuitable for very
high frequencies. We consider here the particular problem as an example only, for the pur-
pose of demonstrating the asymptotic technique which can be applied to the case of arbitrary
incident wave and arbitrary open geometry of the waveguide, in the short-wave regime.

By applying the Fourier transform along thex-axis

8(α, y) =
∫ ∞
−∞

ϕ(x, y) eiαx dx, ϕ(x, y) = 1

2π

∫ ∞
−∞

8(α, y)e−iαx dα (5)

to the Helmholtz Equation (3) (see [5]), we obtain the following representation for the function
8(α, y)

8(α, y) =


A(α) e−βy, y > h, (6a)

C(α)e−βy +D(α)eβy, |y| 6 h, (6b)

B(α)eβy, y < −h, (6c)

whereA(α), B(α), C(α), D(α) are unknown functions which should be defined from the
boundary conditions andβ = √α2− k2. In the definition of the branching functionβ(α) we
use the branch cut such that Reβ > 0 for arbitrary complex-valuedα.
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It is evident that the boundary condition (4) provides continuity of the potentialϕ(x, y)

over the plates

ϕ|y=h+0 = ϕ|y=h−0 = −ϕ in|y=h; ϕ|y=−h+0 = ϕ|y=−h−0 = −ϕ in|y=h, |x| 6 a. (7)

Together with the continuity of the wave field outside the plates, this involves the equality

ϕ|y=h+0 = ϕ|y=h−0; ϕ|y=−h+0 = ϕ|y=−h−0, −∞ < x <∞ (8)

that gives the two relations

A(α) e−βh = C(α)e−βh +D(α)eβh, (9a)

B(α)e−βh = C(α)eβh +D(α)e−βh. (9b)

Let us introduce the new unknown functionsu(x) andv(x) as follows

∂φ

∂y

∣∣∣∣
y=h+0

− ∂φ

∂y

∣∣∣∣
y=h−0

=
{

0, |x| > a
u(x), |x| 6 a , (10a)

∂φ

∂y

∣∣∣∣
y=−h−0

− ∂φ

∂y

∣∣∣∣
y=−h+0

=
{

0, |x| > a
u(x), |x| 6 a . (10b)

The differences vanish here along|x| > a because of the continuity of the wave field.
With the use of (5), the last equations are equivalent to

β[A(α) e−βh +D(α)eβh − C(α)e−βh] = −
∫ a

−a
u(ξ)eiαξ dξ, (11a)

β[B(α)e−βh + C(α)eβh −D(α)e−βh] =
∫ a

−a
v(ξ)eiαξ dξ. (11b)

It follows from (9), (11) that

C(α) = e−βh

2β

∫ a

−a
v(ξ)eiαξ dξ ; D(α) = −e−βh

2β

∫ a

−a
u(ξ)eiαξ dξ, (12)

with A(α) andB(α) being defined from (9). Lastly, the boundary condition (7) yields the
following system of two integral equations

1

2π

∫ a

−a
u(ξ)dξ

∫ ∞
−∞

eiα(ξ−x)

2β
dα − 1

2π

∫ a

−a
v(ξ)dξ

∫ ∞
−∞

eiα(ξ−x)−2βh

2β
dα

= e−ik(h sin ϑ+x cosϑ), |x| 6 a, (13)

1

2π

∫ a

−a
v(ξ)dξ

∫ ∞
−∞

eiα(ξ−x)

2β
dα − 1

2π

∫ a

−a
u(ξ)dξ

∫ ∞
−∞

eiα(ξ−x)−2βh

2β
dα

= −eik(h sin ϑ−x cosϑ), |x| 6 a. (14)
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By applying summation and subtraction to (13) and (14), we can reduce the last system to a
pair of two independent integral equations∫ a

−a
[u(ξ)+ v(ξ)]K1(x − ξ)dξ = −4i sin(kh sin ϑ)e−ikx cosϑ, |x| 6 a, (15)

∫ a

−a
[u(ξ)− v(ξ)]K2(x − ξ)dξ = 4 cos(kh sin ϑ)e−ikx cosϑ, |x| 6 a, (16)

where

K1,2(x) = 1

2π

∫ ∞
−∞

G1,2(α)e−iαx dα, (17)

G1(α) = 1− e−2βh

β
; G2(α) = 1+ e−2βh

β
. (18)

Note that the symbolic functionsG1(α) andG2(α) have the branch pointsα = ±k, and
there are no singularities, except these two points, which is an intrinsic property of open
structures. The closed ones may possess a countable set of simple poles, with a finite number
of them being distributed on the real axis. When any pole coincides with the origin, we have a
resonant case (see [12]). As shown below, the distribution of the zeros of the symbolG1,2(α)

is important too. If a small attenuation is added to the medium, then the positive zeros and the
branch pointα = k move upwards, and the negative ones downwards [5]. This implies that for
an ideal medium, for which these points are situated on the real axis, the integration contourσ

in (17) should bend around the positive points from below and the negative ones from above.
It is conventionally recognized that a presence of branch points in the symbolic func-

tion complicates analytical treatment. The algorithm developed below is insensitive to the
influence of the branching effect.

3. High-frequency asymptotic solution of the main integral equations

Obviously, in order to solve Equations (15) and (16), it is sufficient to treat the following
equation written in a nondimensional form∫ b

−b
w(ξ)K(x − ξ)dξ = f (x); |x| 6 b, χ = kh, b = a/h, (19a)

u(x)± v(x) =
{ −4i sin(χ sin ϑ)

4 cos(χ sin ϑ)

}
w(x)

h
; f (x) = e−iχx cosϑ , (19b)

K(x) = 1

2π

∫
σ

G1,2(α)e−iαx dα, G1,2(α) = 1∓ e−2γ

γ
; γ =

√
α2− χ2. (19c)

There are two independent dimensionless parameters in this problem – the frequency para-
meterχ and the relative length of the waveguideb = a/h. The asymptotic analysis under-
taken by Jones [11] implies a so-called one-mode regime(π < χ < 2π) with b → ∞. We
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study the opposite caseχ = kh → ∞ with boundedb (so ka → ∞ too), which is more
complex, since the number of propagating modes grows with increasing frequency.

Let us represent (following Aleksandrov [13]) the solution of Equation (19) as a super-
position of the three functions

w(x) = w1(b + x)+ w2(b − x)− w0(x), (20)

with the new ones satisfying the following system equivalent to the initial Equation (19)∫ ∞
−b
w1(b + ξ)K(x − ξ)dξ

= f (x)+
∫ −b
−∞
[w2(b − ξ)− w0(ξ)]K(x − ξ)dξ, (−b < x <∞), (21a)

∫ b

−∞
w2(b − ξ)K(x − ξ)dξ

= f (x)+
∫ ∞
b

[w1(b + ξ)− w0(ξ)]K(x − ξ)dξ, (−∞ < x < b), (21b)∫ ∞
−∞

w0(ξ)K(x − ξ)dξ = f (x), (−∞ < x <∞). (21c)

From a physical point of view the integral operators on the left-hand sides of (21) are
related to one infinite waveguide and two semi-infinite ones. For a wide class of physical
problems additional integrals on the right (21a, b), the so-called ‘tails’, appear to be small in
some sense. For instance, if the frequency is low enough, so that there is no real zero of the
symbolG1,2(α) (k is less than the first critical value), then for a long waveguide (b = a/h� 1
– the asymptotic case considered by Jones [11]) the differences in the square brackets vanish
whenξ →±∞. Thus, it can be proved that the integrals on the right tend to zero witha→∞.
Physically it means that the edges of the thin open-ended waveguide do not influence each
other in an asymptotic sense. A similar approach is possible for the short-wave diffraction
problem for a single isolated plate (as well as for a single slot in the infinite plate). The
symbolic functionG(α) there may be formally obtained from (18) ath→∞: G(α) ∼ 1/γ ,
thus there are no zeros of the functionG(α). It involves again an asymptotic disappearance
of the right-hand integrals (21a, b), with the same physical meaning – the edges of the plate
influence each other weakly whena/λ → ∞ (λ = 2π/k is the wave-length). The described
approach generates the well known ‘edge-waves’ method (see [9]) which was developed by
means of a different mathematical technique.

In the problem at hand the zeros±α1m,±α2m of the functionG1,2(α)

α1m =
√
χ2− (πm)2; α2m =

√
χ2 − (πm− 1

2π)
2, m = 1,2, . . . (22)

play the most important role.
The number of positive zeros (22) increases with the growth of the frequency parameter

χ = kh. It generates more and more propagating ‘mode waves’ inside the waveguide (see [5]).
Thus, the ends of the open finite-length waveguide just affect each other by these propagating
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waves, and the internal wave process differs considerably from that in semi-infinite structures.
As a result, the differences[w2(b−ξ)−w0(ξ)], [w1(b+ξ)−w0(ξ)] do not vanish asχ →∞.

In spite of the finite-length structure cannot be represented as a composition of two semi-
infinite ones, there is a classical idea that diffraction by the open end of the finite-length
waveguide is similar to diffraction by the edge of a semi-infinite one, when the wave number
approaches any mode value. We mean the optical range of electromagnetics, where the both
geometric sizes of the structure (a andh) are several thousand times larger than the wave
length (see [14]). Below we determine in which sense this point of view is correct.

To begin with, let us write out the explicit representation for the kernels (see [8])

K1,2(x) = 1
2i{H(1)

0 (χ |x − ξ |)∓H(1)
0 [χ

√
4+ (x − ξ)2]}, (23)

whereH(1)
0 is the Hankel function of the first order with the following asymptotic behaviour

H
(1)
0 (z) ∼

√
2

πz
ei(z−π/4); z→∞. (24)

It is clear from (23) and (24) that at high frequencies(χ � 1) the kernelK(x) in the right-
hand sides of (21a, b) is strongly oscillating. So the right-hand integrals in (21a, b) may be
small, if the differences in square brackets are asymptotically bounded.

Let us assume, as a first step, that these integrals can be neglected (correctness of this
assumption should be verified afterwards). Then we can construct the solution of the Equa-
tions (21a, b) over the semi-infinite intervals using the Wiener-Hopf method. The derivation
procedure is rather standard and routine (see for instance [5]). It gives the following result

w1(x) = e−iχ(x−b) cosϑ

G(χ cosϑ)
− 1

2G+(−χ cosϑ)

∞∑
m=1

(πm)2

αm(αm + χ cosϑ)

×G+(αm)ei(αmx+χb cosϑ), (25a)

w2(x) = eiχ(x−b) cosϑ

G(χ cosϑ)
− 1

2G+(χ cosϑ)

∞∑
m=1

(πm)2

αm(αm − χ cosϑ)

×G+(αm)ei(αmx−χb cosϑ), (25b)

whereG(α) = G+(α)G−(α) is a factorization of the functionG(α).
The solution of Equation (21c) is obtained by application of the Fourier transform as

follows

w0(x) = e−iχx cosϑ

G(χ cosϑ)
, (25c)

so we can give the final representation forw(x), with the accepted assumption, as

w(x) = e−iχx cosϑ

G(χ cosϑ)
− 1

2

∞∑
m=1

(πm)2
G+(αm)
αm

×
{

ei[αm(b−x)−χb cosϑ]

(αm − χ cosϑ)G+(χ cosϑ)
+ ei[αm(b+x)+χb cosϑ]

(αm + χ cosϑ)G+(−χ cosϑ)

}
+O(χ−1/2). (26)
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(a) (b)

Figure 2. Comparison between exact (–) and asymptotic (- - -) solution of the integral Equation (19a), when
θ = π/3; χ = kh = 10·5π ; b = a/h = 1;G1(α) = [1− exp(−2γ )]/γ : (a) Re[w(x)]; (b) Im[w(x)].

The asymptotic estimate of the error of this formula is proved below.
The structure of the obtained solution (26) is the following. The first term corresponds to

the case of an infinite waveguide and has the orderO(χ), χ → ∞ (so far asG(χ cosϑ) =
i(1∓exp(2χi sin ϑ))/(χ sin ϑ)). Several oscillating terms under the sum sign may appear to
have the same orderO(χ) wih respect to parameterχ (if αm ∼ χ cosϑ). Thus, the behaviour
of the solution is also highly oscillating.

When estimating the value of the right-hand integrals in (21a, b), let us note that the
argument(x − ξ) in the kernelK(x − ξ) is of a constant sign for allx and ξ there, so
K(x − ξ) ∼ O(1/

√
χ) uniformly on x andξ . Thus, the integrand is of the orderO(χ1/2),

χ → ∞. Besides, there is no stationary point, which is directly opposite to the left-hand
kernel with its stationary pointx − ξ = 0 ∼ ξ = x. Therefore, it can be shown, with the
use of integration by parts that, owing to the oscillating structure of the integrand, the value
of the integrals has the orderO(χ1/2)/χ = O(χ−1/2), χ → ∞. This proves the correctness
of the method when the right-hand integrals in (21a, b) are neglected. The only breakdown
takes place when the value of the variablex coincides with the edge point (x = −b in
(21a) andx = b in (21b)). For these values the argument(x − ξ) may be small, and the
asymptotic estimate (24) for the kernel is not valid. Thus, the developed approach gives the
correct representation (26) all over the interval−b < x < b, excluding the ‘boundary layers’
whereb ± x ∼ 1/χ . This property can be clearly seen from Figure 2. Another restriction
is related to the cases when the incident angleϑ approaches those values where the incident
wave generates standing modes. In these casesG(χ cosθ) tends to zero,w1(x) andw2(x)

grow to infinity, and the right-hand integrals in (21a, b) become unbounded. Thus, for some
particular values of the frequency and the angle of incidence the main asymptotic result (26)
fails.

The main obtained formula (26) is worthy of special discussion. First of all, the fact that
the wave amplitude grows along the waveguide faces with increasing frequency(O(χ), χ →
∞) is not described in the literature. Another interesting fact is that the mode waves do not
decay with distance; however, some integrals of these wave functions decay, so they could
be neglected in (21a, b). The nondecaying structure of the wave field in (26) shows that the
solution has no relation to the problem with the semi-infinite waveguide where only one type
of edge-wave, instead of two, is present.
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It should also be noted that the asymptotic contribution to the sum in (26) is given only by
nondecaying terms in the sum (whenαm is real). Therefore, in practice the summation can be
restricted bym = n, if the frequency parameter isχ = π(n+ δ) (0< δ < 1/2, or 1/2< δ <
1), wheren is a large positive integer. Thus, the formula (26) is quite appropriate to evaluate
the split functionw(x) at high frequencies, because efficient high-frequency representations
for the coefficientsG+(αm) are proposed in [5].

As soon as the solution of the main integral equation has been determined by (26), the
scattered wave fieldϕ(x, y) can be obtained directly from (5), (6), and (12)

ϕ(x, y) = i

4

∫ a

−a
v(ξ)H

(1)
0 [k

√
(x − ξ)2+ (y + h)2]dξ

− i
4

∫ a

−a
u(ξ)H

(1)
0 [k

√
(x − ξ)2+ (y − h)2]dξ, (27)

uniformly over(x, y). The functionsu(x) andv(x) here can be evidently expressed from (19b)
in terms of the functionw(x), given by Equation (26) for the casesG = G1 andG = G2.

To assess the accuracy of the asymptotic formula (26) we applied a numerical method to
solve the integral Equation (19). The main obstacle here is connected with the requirement
that the numerical algorithm must provide stable calculations for arbitrarily high frequencies.
Equation (19) is a Fredholm integral equation of the first kind, with the kernel (23) having a
logarithmic singularity at|x − ξ | → 0, like in classical boundary-element techniques. This is
why we used a collocation technique which provides stability with a small mesh widthε, if
the integration of the logarithmic part of the kernel is carried out explicitly.

To estimate the total number of nodesN , we note that we should take approximately
10 points over the wave-length, thusN ∼ 10ak/π. Obviously, with increasing frequency
parameterχ , the number of nodesN increases considerably. Therefore, the significance of
the obtained asymptotic results becomes self-evident again.

An example of the comparison between the obtained analytical solution and the solution
constructed by a direct numerical method is illustrated in Figure 2.

4. Conclusions

In this paper we have developed a self-consistent high-frequency asymptotic approach to the
diffraction problem for open finite-length waveguides. The proposed method is characterized
by the following features:

(1) It is well known (see [5]) that the presence of the branch pointsα = ±χ complicates the
analytical analysis of the diffraction problems considerably. The proposed method is quite
suitable for kernels containing branch points, as well as for kernels with meromorphic
symbolic functions free of any branching.

(2) Generally, the wave field inside the finite-length structure cannot be represented as a
composition of the wave fields in two semi-infinite waveguides. However, an asymptotic
solution of the main integral equation can be constructed by means of a superposition of
solutions for semi-infinite and infinite structures. This becomes possible thanks to certain
asymptotic properties of the ‘tails’ in the integrals.

(3) The obtained results fail near the edges of the plates, as well as near the frequencies when
the incident wave can generate standing modes. Thus, our results complement the classical
results of Vajnshtejn developed only for frequencies close to the critical-mode values.
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(4) It has been said (in some private discussions) that it is impossible to derive any expli-
cit high-frequency asymptotics for the finite-length waveguide. However, the proposed
method allows one to construct an explicit high-frequency representation which needs an
additional numerical treatment to calculate some coefficients only.

(5) The main result of the work is given by the explicit formula (26) which takes two lines
only. The upper limit of the summation in this formula may be chosen asm = n (n is a
number of positive zeros ofG1,2(α)).

(6) The considered multi-mode case cannot be studied by a high-frequency asymptotic method
applicable to a single slit, since the latter is free of wave modes. An asymptotic approach
suitable for elongated waveguides with a fixed number of mode waves cannot be also
applied to the considered problem, since the number of modes grows with increasing
frequency.

(7) With the growth of the frequency the amplitude of the solution of the main integral equa-
tion (and the entire wave field as well) increases asO(χ). The structure of the solution
becomes highly oscillatory asχ →∞.

(8) The error of the obtained asymptotics is of the orderO as(χ1/2), χ = kh→∞. It is valid
for arbitrarily fixed relative elongationb = a/h. Thus, the error slowly decreases with
the frequency increasing; however Figure 2 demonstrates that the accuracy of the results
is very good for moderate values of the frequency parameter – not ony for extremely high
ones (in practice, fromχ > 10).
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